308 research outputs found

    De novo transcriptome sequencing in Frankliniella occidentalis to identify genes involved in plant virus transmission and insecticide resistance

    Get PDF
    AbstractThe western flower thrips (WFT), Frankliniella occidentalis, a world-wide invasive insect, causes agricultural damage by directly feeding and by indirectly vectoring Tospoviruses, such as Tomato spotted wilt virus (TSWV). We characterized the transcriptome of WFT and analyzed global gene expression of WFT response to TSWV infection using Illumina sequencing platform. We compiled 59,932 unigenes, and identified 36,339 unigenes by similarity analysis against public databases, most of which were annotated using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Within these annotated transcripts, we collected 278 sequences related to insecticide resistance. GO and KEGG analysis of different expression genes between TSWV-infected and non-infected WFT population revealed that TSWV can regulate cellular process and immune response, which might lead to low virus titers in thrips cells and no detrimental effects on F. occidentalis. This data-set not only enriches genomic resource for WFT, but also benefits research into its molecular genetics and functional genomics

    Calcium-calmodulin does not alter the anion permeability of the mouse TMEM16A calcium-activated chloride channel.

    Get PDF
    The transmembrane protein TMEM16A forms a Ca(2+)-activated Cl(-) channel that is permeable to many anions, including SCN(-), I(-), Br(-), Cl(-), and HCO3 (-), and has been implicated in various physiological functions. Indeed, controlling anion permeation through the TMEM16A channel pore may be critical in regulating the pH of exocrine fluids such as the pancreatic juice. The anion permeability of the TMEM16A channel pore has recently been reported to be modulated by Ca(2+)-calmodulin (CaCaM), such that the pore of the CaCaM-bound channel shows a reduced ability to discriminate between anions as measured by a shift of the reversal potential under bi-ionic conditions. Here, using a mouse TMEM16A clone that contains the two previously identified putative CaM-binding motifs, we were unable to demonstrate such CaCaM-dependent changes in the bi-ionic potential. We confirmed the activity of CaCaM used in our study by showing CaCaM modulation of the olfactory cyclic nucleotide-gated channel. We suspect that the different bi-ionic potentials that were obtained previously from whole-cell recordings in low and high intracellular [Ca(2+)] may result from different degrees of bi-ionic potential shift secondary to a series resistance problem, an ion accumulation effect, or both

    Different Transcriptomic Responses to Thermal Stress in Heat-Tolerant and Heat-Sensitive Pacific Abalones Indicated by Cardiac Performance

    Get PDF
    The Pacific abalone Haliotis discus hannai is one of the most economically important mollusks in China. Even though it has been farmed in southern China for almost 20 years, summer mortality remains the most challengeable problem for Pacific abalone aquaculture recently. Here, we determined the different heat tolerance ability for five selective lines of H. discus hannai by measuring the cardiac performance and Arrhenius breakpoint temperature (ABT). The Red line (RL) and Yangxia line (YL) were determined as the most heat-sensitive and most heat-tolerant line, respectively. Heart rates for RL were significantly lower than those of the YL at the same temperature (p < 0.05). The differentially expressed genes (DEGs), which were enriched in several pathways including cardiac muscle contraction, glutathione metabolism and oxidative phosphorylation, were identified between RL and YL at control temperature (20°C) and heat stress temperature (28.5°C, the ABT of the RL) by RNA-seq method. In the RL, 3370 DEGs were identified between the control and the heat-stress temperature, while only 1351 DEGs were identified in YL between these two temperature tests. Most of these DEGs were enriched in the pathways such as protein processing in endoplasmic reticulum, nucleotide binding and oligomerization domain (NOD) like receptor signaling, and ubiquitin mediated proteolysis. Notably, the most heat-tolerant line YL used an effective heat-protection strategy based on moderate transcriptional changes and regulation on the expression of key genes

    Evaluation of port efficiency in Shanghai Port and Busan Port based on three-stage DEA model with environmental concerns

    Get PDF
    The global green development has led many ports to impose measures to reduce emissions and improve port efficiency. As large-scale construction can do damage to the environment, it is not supported under the green strategy, which makes it more important to make full use of existing resources in the port competition. While, whether there is a relationship between emissions and port efficiency, and whether the relationship can reflect the problems in port management are vital factors need to be considered when making port development strategy. To solve the two problems, this paper takes the case of Shanghai Port and Busan Port, and uses the three-stage Data Envelopment Analysis (DEA) to evaluate the efficiency of the two ports respectively. Pollutant emissions from the ports are selected as an environmental variable in the second stage to examine their effects on the redundancy of input variables. The results indicate that the efficiency of Shanghai Port is insufficient due to excessive scale and pollutant emissions. Based on the results, some suggestions are given to improve the drawbacks. Furthermore, the use of the three-stage DEA to study the annual change in performance of a single target in this paper is also a novelty. First published online 20 November 201

    Overexpression of DBT suppresses the aggressiveness of renal clear cell carcinoma and correlates with immune infiltration

    Get PDF
    Conventional therapy for kidney renal clear cell carcinoma (KIRC) is unpromising. The tumor microenvironment (TME) is intimately linked to the invasiveness of a variety of tumor forms, including KIRC. The purpose of this research is to establish the prognostic and immune-related significance of dihydrolipoamide branched chain transacylase E2 (DBT) in individuals with KIRC. In this investigation, we discovered that DBT expression was down-regulated in a range of human malignancies, and low DBT expression in KIRC was linked to higher-level clinicopathological characteristics as well as a poor prognosis for KIRC patients. Based on the findings of univariate and multivariate Cox regression analyses, DBT might be employed as an independent prognostic factor in KIRC patients. Furthermore, we developed a nomogram to better investigate DBT’s predictive usefulness. To confirm DBT expression, we examined KIRC cell lines using RT-qPCR and Western blotting. We also examined the role of DBT in KIRC using colony formation, CCK-8, EdU, transwell, and wound healing assays. We discovered that plasmid-mediated overexpression of DBT in KIRC cells slowed cell proliferation and decreased migration and invasion. Multiple enrichment analyses revealed that DBT may be involved in processes and pathways related to immunotherapy and drug metabolism. We computed the immune infiltration score and discovered that the immunological score and the ESTIMATE score were both greater in the DBT low expression group. According to the CIBERSORT algorithm, DBT seems to promote anti-cancer immune responses in KIRC by activating M1 macrophages, mast cells, and dendritic cells while inhibiting regulatory T cells. Finally, in KIRC, DBT expression was found to be highly linked to immunological checkpoints, targeted medicines, and immunotherapeutic agents. Our findings suggest that DBT is a distinct predictive biomarker for KIRC patients, playing a significant role in the TME of KIRC and serving as a reference for the selection of targeted treatment and immunotherapy

    Antimicrobial Mechanism of Antimicrobial Peptide from Paenibacillus ehimensis against Penicillium expansum Spores

    Get PDF
    Penicillium expansum, a common spoilage organism in postharvest fruits, can cause fruit decay and deterioration and endanger human health. It is of great significance to investigate the antimicrobial mechanism of the antimicrobial peptide from Paenibacillus ehimensis on P. expansum spores. The antimicrobial activity of the antimicrobial peptide against P. expansum spores was determined by using the two-fold dilution method as well as measuring the time-killing curve. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to evaluate the effect of the antimicrobial peptide on the ultrastructure of P. expansum spores. The effects of the antimicrobial peptide on the cell membrane and reactive oxygen species (ROS) accumulation of P. expansum were analyzed by fluorescence probes. The results showed that the minimum inhibitory concentration (MIC) of the antimicrobial peptide against P. expansum spores was 3.5 AU/mL. The spore germination rate was significantly decreased by 28.30%, 84.57% and 100% by the antimicrobial peptide at concentrations of 0.5 MIC, 1 MIC and 2 MIC compared with the blank control (P < 0.05). After treatment with the antimicrobial peptide, the spores appeared seriously sunken, the intracellular contents were leaked out, and the morphology and structure were changed. The antimicrobial peptide damaged the cell wall of P. expansum, resulting in the leakage of alkaline phosphatase. The antimicrobial peptide depolarized the cell membrane potential in a dose-dependent manner, and increased the cell membrane permeability, leading to K+ leakage. The fluidity of the cell membrane was increased, which in turn resulted in a significant decrease in DPH fluorescence intensity (P < 0.05). The integrity of the cell membrane was damaged by the antimicrobial peptide, so the fluorescence intensity of SYTOX-Green and the contamination rate of PI were increased. Moreover, the antimicrobial peptide at 1 MIC and 2 MIC increased the fluorescence intensity of DCFH-DA significantly (P < 0.05) and resulted in ROS accumulation, which affected the physiology and metabolism of P. expansum spores. This study indicated that the target sites of the antimicrobial peptide against P. expansum spores were mainly the cell membrane and ROS metabolism

    Independent and Combined Effects of Heatwaves and PM2.5 on Preterm Birth in Guangzhou, China: A Survival Analysis.

    Get PDF
    BACKGROUND: Both extreme heat and air pollution exposure during pregnancy have been associated with preterm birth; however, their combined effects are unclear. OBJECTIVES: Our goal was to estimate the independent and joint effects of heatwaves and fine particulate matter [PM 0) for less extreme heatwaves (i.e., shorter or with relatively low temperature thresholds) but were less than additive (RERIs<0) for more intense heatwaves. CONCLUSIONS: Our research strengthens the evidence that exposure to heatwaves during the final gestational week can independently trigger preterm birth. Moderate heatwaves may also act synergistically with PM2.5 exposure to increase risk of preterm birth, which adds new evidence to the current understanding of combined effects of air pollution and meteorological variables on adverse birth outcomes. https://doi.org/10.1289/EHP5117
    • …
    corecore